Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(x), min(s(y), s(z)))
F(s(x), s(y), s(z)) → P(min(s(x), max(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(y), s(z))
F(s(x), s(y), s(z)) → MIN(s(x), max(s(y), s(z)))
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
F(x, y, 0) → MAX(x, y)
F(x, 0, z) → MAX(x, z)
F(0, y, z) → MAX(y, z)
F(s(x), s(y), s(z)) → MAX(s(y), s(z))
F(s(x), s(y), s(z)) → MAX(s(x), max(s(y), s(z)))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(x), min(s(y), s(z)))
F(s(x), s(y), s(z)) → P(min(s(x), max(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(y), s(z))
F(s(x), s(y), s(z)) → MIN(s(x), max(s(y), s(z)))
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
F(x, y, 0) → MAX(x, y)
F(x, 0, z) → MAX(x, z)
F(0, y, z) → MAX(y, z)
F(s(x), s(y), s(z)) → MAX(s(y), s(z))
F(s(x), s(y), s(z)) → MAX(s(x), max(s(y), s(z)))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 9 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [0,1] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [0] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [1,0,1] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z)))) at position [1,0] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z)))) at position [1] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
p(s(x)) → x
min(0, y) → 0
max(0, y) → y

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))) at position [2,1] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z)))) at position [2] we obtained the following new rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule F(s(x), s(y), s(z)) → F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z)))) at position [1] we obtained the following new rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, max(s(x0), s(x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))
F(s(0), s(y1), s(y2)) → F(s(max(0, max(y1, y2))), 0, s(min(0, min(y1, y2))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, max(0, x0))), min(y0, x0), s(min(y0, min(0, x0))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
QDP
                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(0), s(y1), s(y2)) → F(s(max(0, max(y1, y2))), 0, s(min(0, min(y1, y2))))
F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, max(s(x0), s(x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, max(0, x0))), min(y0, x0), s(min(y0, min(0, x0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, max(s(x0), s(x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, max(0, x0))), min(y0, x0), s(min(y0, min(0, x0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, max(s(x0), s(x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1))))) at position [0,0,1] we obtained the following new rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, max(0, x0))), min(y0, x0), s(min(y0, min(0, x0))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(0), s(x0)) → F(s(max(y0, max(0, x0))), min(y0, x0), s(min(y0, min(0, x0)))) at position [0,0,1] we obtained the following new rules:

F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(0, x0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(0, x0))))
F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(x0), s(0)) → F(s(max(y0, max(x0, 0))), min(y0, x0), s(min(y0, min(x0, 0)))) at position [0,0,1] we obtained the following new rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(x0, 0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
QDP
                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(x0, 0))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(0, x0))))
F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, min(s(x0), s(x1))))) at position [2,0,1] we obtained the following new rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
QDP
                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(0, x0))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(x0, 0))))
F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(0, x0)))) at position [2,0,1] we obtained the following new rules:

F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
QDP
                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(x0, 0))))
F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, min(x0, 0)))) at position [2,0,1] we obtained the following new rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
QDP
                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0))) at position [2,0] we obtained the following new rules:

F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
QDP
                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(0))
F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0)))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(min(y0, 0))) at position [2,0] we obtained the following new rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
QDP
                                                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))
F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(0))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
QDP
                                                                                                          ↳ Narrowing
                                                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))
F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(0))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule F(s(y0), s(0), s(x0)) → F(s(max(y0, x0)), min(y0, x0), s(0)) at position [1] we obtained the following new rules:

F(s(s(x0)), s(0), s(s(x1))) → F(s(max(s(x0), s(x1))), s(min(x0, x1)), s(0))
F(s(0), s(0), s(x0)) → F(s(max(0, x0)), 0, s(0))
F(s(x0), s(0), s(0)) → F(s(max(x0, 0)), 0, s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))
F(s(s(x0)), s(0), s(s(x1))) → F(s(max(s(x0), s(x1))), s(min(x0, x1)), s(0))
F(s(x0), s(0), s(0)) → F(s(max(x0, 0)), 0, s(0))
F(s(0), s(0), s(x0)) → F(s(max(0, x0)), 0, s(0))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                                  ↳ QDPOrderProof
                                                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F(s(y0), s(x0), s(0)) → F(s(max(y0, x0)), min(y0, x0), s(0))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(F(x1, x2, x3)) = x2   
POL(max(x1, x2)) = 0   
POL(min(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   

The following usable rules [17] were oriented:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ QDPOrderProof
QDP
                                                                                                                      ↳ PisEmptyProof
                                                                                                        ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
QDP
                                                                                                          ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule F(s(y0), s(s(x0)), s(s(x1))) → F(s(max(y0, s(max(x0, x1)))), min(y0, s(max(x0, x1))), s(min(y0, s(min(x0, x1))))) at position [2,0] we obtained the following new rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(max(s(x0), s(x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(0), s(s(y1)), s(s(y2))) → F(s(max(0, s(max(y1, y2)))), min(0, s(max(y1, y2))), s(0))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(max(0, x0)))), min(y0, s(max(0, x0))), s(min(y0, s(0))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
QDP
                                                                                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(max(s(x0), s(x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(0), s(s(y1)), s(s(y2))) → F(s(max(0, s(max(y1, y2)))), min(0, s(max(y1, y2))), s(0))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(max(0, x0)))), min(y0, s(max(0, x0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(max(s(x0), s(x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(max(0, x0)))), min(y0, s(max(0, x0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(max(s(x0), s(x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1)))))) at position [0,0,1,0] we obtained the following new rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
QDP
                                                                                                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(max(0, x0)))), min(y0, s(max(0, x0))), s(min(y0, s(0))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(max(0, x0)))), min(y0, s(max(0, x0))), s(min(y0, s(0)))) at position [0,0,1,0] we obtained the following new rules:

F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
QDP
                                                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(max(x0, 0)))), min(y0, s(max(x0, 0))), s(min(y0, s(0)))) at position [0,0,1,0] we obtained the following new rules:

F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
QDP
                                                                                                                              ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(max(s(x0), s(max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2))))) at position [0,0] we obtained the following new rules:

F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(max(s(x0), s(x1)))), s(min(y0, s(s(min(x0, x1)))))) at position [1,1,0] we obtained the following new rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(s(max(x0, x1)))), s(min(y0, s(s(min(x0, x1))))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Rewriting
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ Rewriting
QDP
                                                                                                                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(s(max(x0, x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(max(0, x0))), s(min(y0, s(0)))) at position [1,1,0] we obtained the following new rules:

F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Rewriting
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ Rewriting
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Rewriting
QDP
                                                                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(s(max(x0, x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(max(x0, 0))), s(min(y0, s(0)))) at position [1,1,0] we obtained the following new rules:

F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Rewriting
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ Rewriting
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Rewriting
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                              ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(s(max(x0, x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2)))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), min(s(x0), s(max(y1, y2))), s(s(min(x0, min(y1, y2))))) at position [1] we obtained the following new rules:

F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), s(min(x0, max(y1, y2))), s(s(min(x0, min(y1, y2)))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ AND
                                                                                                        ↳ QDP
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Rewriting
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Rewriting
                                                                                                                        ↳ QDP
                                                                                                                          ↳ Rewriting
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Rewriting
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ Rewriting
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Rewriting
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ Rewriting
                                                                                                                                            ↳ QDP
                                                                                                                                              ↳ Rewriting
QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(y0), s(s(s(x0))), s(s(s(x1)))) → F(s(max(y0, s(s(max(x0, x1))))), min(y0, s(s(max(x0, x1)))), s(min(y0, s(s(min(x0, x1))))))
F(s(y0), s(s(0)), s(s(x0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))
F(s(y0), s(s(x0)), s(s(0))) → F(s(max(y0, s(x0))), min(y0, s(x0)), s(min(y0, s(0))))
F(s(s(x0)), s(s(y1)), s(s(y2))) → F(s(s(max(x0, max(y1, y2)))), s(min(x0, max(y1, y2))), s(s(min(x0, min(y1, y2)))))

The TRS R consists of the following rules:

max(s(x), s(y)) → s(max(x, y))
max(x, 0) → x
max(0, y) → y
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
min(0, y) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.